
Please do not cite or distribute without consent of the authors. 

Teachers’ knowledge of students: Defining a domain 
Heather Hill, Mark Chin, & David Blazar 

Harvard Graduate School of Education 
 

Knowledge of students ranks high among the teacher capabilities identified by 
professional standards documents (Council of Chief School Officers, 2011; National Board for 
Professional Teaching Standards, 1989) and scholars (Cohen, Raudenbush & Ball, 2003; 
Shulman, 1986, 1987) as important to effective teaching.  Many observe that such knowledge 
enables a variety of effective classroom strategies, including adjusting the pacing of instruction 
(Clark & Peterson, 1986), forming appropriate instructional groups (Shavelson & Borko, 1979), 
and designing tasks and questions to further student understanding (An, Kulm, & Wu, 2008). In 
fact, several broad-scale interventions and professional development efforts are based on the idea 
that improving teachers’ knowledge of students will improve student outcomes, and evidence 
exists that some of these approaches have worked (Bell, Wilson, Higgins, & McCoach, 2010; 
Black & Wiliam, 1998; Carpenter, Fennema, Chiang, Peterson, & Loef, 1989; Tirosh, 2000).    

Despite this considerable consensus on the importance of teachers’ knowledge of their 
students, a review of this research literature suggests two quite divergent approaches to 
measuring this construct. One research tradition, begun in the late 1960s and active for almost 
two decades, measured teacher accuracy in predicting student performance on cognitive 
assessments (Helmke & Schrader, 1987; Hoge & Coladarci, 1989; Scates & Gage, 1958). 
Another research tradition, begun more recently (Carpenter, Fennema, Peterson & Carey, 1988; 
Hill, Ball & Schilling, 2008) and still active today (Sadler, Sonnert, Coyle, Cook-Smith, & 
Miller, 2013), focuses on teachers’ understanding of student thinking, including students’ prior 
knowledge, likely developmental pathways, and prevalent misconceptions. However, no studies 
compare these perspectives, describing their relationship to one another and to other aspects of 
teacher knowledge. Nor do existing studies provide evidence regarding the reliability and 
validity of the metrics developed to represent these two aspects of teacher knowledge. Finally, 
few such measures are convincingly related to student outcomes. Without evidence regarding 
these issues, it is difficult to assess claims that teachers’ knowledge of students constitutes a key 
capability for effective teaching.   

In this paper, we describe and evaluate two metrics that tap teachers’ knowledge of their 
students’ mathematical thinking. These measures capture teacher accuracy in predicting student 
performance and, following Sadler et al. (2013), teacher knowledge of student misconceptions. 
Specifically, we ask: 

 
1) How well do these metrics differentiate among teachers? 
2) Do teachers’ scores on these measures show evidence of convergent and 

discriminant validity? 
3) How well, if at all, do scores on these constructs predict student outcomes?  

 
Following our review of prior research, we discuss the data and analyses that led to this 
conclusion.  
 

Prior Research 
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Teacher knowledge has long been conceptualized as a multi-faceted construct. Shulman 
and colleagues’ classic formulation of teacher knowledge includes content knowledge, general 
pedagogical knowledge, pedagogical content knowledge, and knowledge of learners and their 
characteristics, among other topics (Shulman, 1986, 1987; Wilson, Shulman, & Richert, 1987). 
In mathematics, the topic of our study, Ball, Thames, and Phelps (2008) elaborated this list, 
arguing for the presence of two distinct sub-domains within pedagogical content knowledge: 
knowledge of content and students, and knowledge of content and teaching. Rowland and 
colleagues (2005) arrived at a different conceptualization, describing foundational knowledge of 
content (propositional knowledge learned while in the academy); transformational knowledge, as 
foundational knowledge applied in classrooms; connective knowledge between topics and across 
lessons; and contingent knowledge, or the ability to reason in practice. Notably, these authors all 
developed their ideas about these facets from observing teaching practice, albeit of different 
populations (i.e., novices, in the case of Shulman and Rowland and colleagues.) or through 
different mediums (i.e., videos of teaching, for Ball and colleagues).  

Leaving for others the correct formulation of a broader structure for teacher knowledge, 
we note the ways in which several theoretical writings provide guidance about a particular 
hypothesized subdomain and our metric of interest here, teachers’ knowledge of students, and in 
particular the multiple elements that are thought to compose this specific domain. Shulman 
(1986) writes that knowledge of learners encompasses “…the conceptions and preconceptions 
that students of different ages and backgrounds bring with them to the learning of those most 
frequently taught topics and lessons” (p. 9). Within his definition of pedagogical content 
knowledge, Shulman also counts student misconceptions and knowledge of topics that are easy 
and difficult for students. Ball, Thames, and Phelps (2008) list a more extensive set of sub-
domains within this construct, including student conceptions and misconceptions around specific 
content, student interests, and likely student reaction to particular instructional tasks. Not 
surprisingly, a recent review (Depaepe, Verschaffel, & Kelchtermans, 2013) suggests 
considerable consensus in the field around knowledge of student conceptions and 
misconceptions as composing a major element of pedagogical content knowledge.  

Using insights afforded by such theory, scholars have empirically investigated teachers’ 
knowledge of student thinking, including specific student misconceptions, developmental 
pathways, and problem-solving strategies. We focus in particular on studies that have attempted 
to create measures of these constructs, a significant portion of the empirical literature (Depaepe 
et al., 2013). For instance, Carpenter and colleagues (1988) measured teachers’ general 
knowledge of student addition and subtraction strategies as well as the particular strategies 
deployed by specific students in their classrooms. Bell, Wilson, Higgins, and McCoach (2010) 
presented teachers with written student work and asked them to identify and explain student 
errors, comment on a range of student solution strategies for a single problem, and explain what 
students might have been thinking as they answered. Although Carpenter and colleagues present 
no reliability information for their items, Bell et al. (2010) used a rubric to score their data, 
resulting in acceptable estimates of internal consistency reliability (0.76 and 0.79 on the pre-test 
and post-test, respectively).   

In a study more explicitly focused on measurement within this domain, Hill, Ball, and 
Schilling (2008) used the same ideas about knowledge of students and content (KCS) described 
in Ball, Thames, and Phelps (2008) to design multiple-choice items. Because the study collected 
pilot data on a large (teachers, n=1552) scale, the authors were able to subject these items to 
factor analyses for the purpose of construct validation, as well as to tests of convergent and 
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discriminant validity. The factor analysis indicated that teacher performance on the KCS items 
related to both a mathematical knowledge factor as well as to a specific KCS factor; reliabilities 
were modest (0.58 to 0.69). Teachers’ growth from a pre-test to post-test on these items were 
responsive to their reports of learning about KCS-related topics in a mathematics professional 
development program, but not to teachers’ reports of learning subject matter knowledge, 
suggesting convergent and discriminant validity. However, with low reliabilities and poor fit to 
the population—most teachers scored well on these items, producing a ceiling effect—these 
items were not pursued further (Hill, personal communication).  

Despite this healthy interest in measuring teachers’ knowledge of student conceptions 
and misconceptions, few studies related teacher knowledge of these topics to student outcomes. 
In one exception, Carpenter and colleagues (1988) found no relationship between their measures 
of teachers’ knowledge of student strategies and actual student performance on tests of 
computation and word problem solving. In a second exception, Sadler, Sonnert, Coyle, Cook-
Smith and Miller (2013) constructed a measure of students’ science misconceptions by asking 
teachers to identify the most commonly chosen distractor for each of 20 multiple-choice items. 
Although as with other studies in this field, the authors did not report the reliability of their 
assessment, they did find that high-achieving students of teachers who possessed both subject 
matter knowledge and knowledge of student misconceptions posted stronger gains than high-
achieving students who had teachers with subject matter only. There was no such effect for low-
achieving students.  

Concurrent with this substantial interest in knowledge of student misconceptions, a 
second, seemingly separate, line of work arose from educational psychologists interested in how 
teachers’ knowledge of students might support their judgments during instructional decision-
making. Initial empirical work in this field appears to have arisen around estimating teacher 
accuracy in predicting student performance as an end in itself, documenting teachers’ absolute 
knowledge of their students rather creating usable metrics to predict instruction or student 
outcomes (see Hoge & Coladarci, 1989). These studies utilized a variety of measurement 
techniques. For instance, in Coladarci (1986), teachers were asked to anticipate each student’s 
performance on selected achievement test items. The author then differenced the teacher’s 
prediction with students’ actual scores for each student-item combination before averaging that 
difference score to the teacher level. Less detailed (and time-consuming) versions of these 
metrics asked teachers to predict class rankings or the total scores of their students on an 
achievement test. Analysts typically then correlated teacher judgments with actual student 
performance, with a median correlation of 0.66 (Hoge & Coladarci, 1989). Interestingly, 
significant cross-teacher variability in the accuracy of predictions appeared to exist (Coladarci, 
1986; Hoge, 1983; Hoge & Coladarci, 1989).  

Two studies used this cross-teacher variability in accuracy to predict student 
performance. Helmke & Schrader (1987) compared 32 fourth and fifth grade teachers’ predictive 
accuracy in mathematics to their students’ outcomes. As students completed a mathematics test, 
teachers estimated, for each student, how many problems on that test the student would solve 
correctly. This measure correlated with students’ own reports that the teacher was aware of their 
performance levels, suggesting concurrent validity, and the metric was marginally significant in 
predicting students’ mathematics test scores (p=0.10), remarkable given the small sample size.  

In a study examining the effect of professional development on teachers’ knowledge and 
practice, Carpenter et al. (1988) administered a measure of early-grade teacher accuracy in 
predicting students’ correct and incorrect answers. For each of six randomly selected students, 
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teachers recorded whether each student would successfully solve each of six different addition 
and subtraction word problems. Teachers were credited for matches between predictions and true 
student outcomes, and this metric was correlated with students’ scores on a computational and 
word problem assessment. In both cases, correlations were above 0.3; however, no controls were 
used for prior student achievement (i.e., these were student status, not gain, scores), rendering 
these results open to critiques of selection bias. In addition, neither the Carpenter nor the Helmke 
studies presented information on the reliability of their metrics—that is, the extent to which 
accuracy scores accurately reflected teachers’ true level of this trait.   

Thus both theory and our review of prior empirical work suggest teacher knowledge is 
multi-faceted, and that within this particular facet – teachers’ knowledge of students – multiple 
elements may exist. Yet rarely are multiple elements from this domain measured and analyzed in 
a single study; this means that neither the scores nor the characteristics of scores from the 
accuracy and student thinking traditions have been compared to one another.  Further, only two 
studies within each of the student thinking and accuracy traditions link teachers’ performance to 
student achievement outcomes, with mixed results in both. Finally, few authors in this field have 
explored the reliability and validity of the metrics they establish. Below, we describe an effort to 
address these issues.  
 

Data and Methods 
 
Sample and Setting 
 

For our analyses, we use data collected by the National Center for Teacher Effectiveness 
(NCTE) main study, which developed and validated different mathematics-related measures in 
fourth- and fifth-grade classrooms. The NCTE study recruited 583 teachers in four large urban 
East coast public school districts. Ultimately, 328 of these teachers were deemed eligible to and 
actually participated in the study. From these teachers and the students in their classrooms, 
NCTE collected data from the 2010-2011 school year through the 2012-2013 school year. Our 
analytic sample comprises a subset of the data collected on these teachers and students due to 
missing data caused by the movement of teachers and classrooms into and out of the study. We 
describe our restricted sample in more detail below.  
  
Data 
 
 Project staff collected data describing teachers, classroom, and students from five 
sources:  teacher questionnaires, video-recorded mathematics lessons, student questionnaires, 
student performance on a project-developed mathematics test, and district administrative data 
containing student demographic information and state standardized test performance. 
 Teachers responded to questionnaires in the fall and spring semesters of each school year, 
for a possible total of six data collection points.  Questions on the fall questionnaire probed 
teachers’ background, preparation, beliefs, and practices in the classroom. A separate set of items 
assessed teachers’ knowledge of the mathematics of upper elementary school and middle school 
using a mix of items from the Mathematical Knowledge for Teaching instrument (Hill, Rowan, 
& Ball, 2005) and released items from the Massachusetts Test for Educator Licensure 
(Charalambous, Hill, McGinn, & Chin, in preparation). Questions on the spring questionnaire 
probed teachers’ coverage of different grade-level mathematical topics in addition to assessing 
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different measures of teachers’ knowledge of students, our main construct of interest. We 
describe these measures in detail below. Teacher survey response rate exceeded 95% for all six 
data points. 
 The project aimed to video-record teachers during their mathematics instruction up to 
three times per school year for each year of the study. Teachers chose when to record lessons, 
though the study asked teachers not to record lessons on days of testing or test preparation. 
Lessons averaged approximately one hour in length. In total, the NCTE project video-recorded 
and scored 1,713 lessons; due to scheduling issues and issues with technology rendering certain 
videos unusable, teachers averaged just under three video-recorded lessons for each year of 
participation.  
 Participating teachers’ students responded to questionnaires in the spring semester of 
each school year. These questionnaires contained 26 questions from the Tripod survey, an 
instrument that contains questions designed to elicit students’ perception of their mathematics 
classrooms (Ferguson, 2012). In addition to Tripod questions, the survey also contained items 
that captured student background characteristics. Across all three academic years, the study 
collected student questionnaire responses from 94% of the students with project data (i.e., 
surveys or performance on the project-developed test) in NCTE classrooms. 
 Participating teachers’ students also completed a study-developed mathematics test in the 
fall and spring semester of each school year (Hickman, Fu, & Hill, 2012). Project staff designed 
this assessment to include more cognitively challenging and mathematically complex items than 
those found in many state standardized tests in hopes that it would prove more strongly aligned 
to the mathematics-specific observational and knowledge measures of teacher effectiveness 
contained in the study. Across all three academic years, the study collected student performance 
data from the spring administration of the project-developed test from 95% of the students with 
project data in NCTE classrooms. Student scores on the test were estimated using a two-
parameter logistic item response theory (IRT) model (Hickman et al., 2012). 
 Finally, each district provided for all fourth- and fifth-grade students the following: 
mathematics teacher assignment for the 2010-2011 through 2012-2013 school years and up to 
two years prior to the study; student demographic data, including gender, race or ethnicity, 
eligibility for subsidized lunch (FRPL), English language learner (ELL) status, and special 
education (SPED) status; and student test scores on state standardized mathematics and English 
language arts (ELA) exams. 
 
Measures 
 

Knowledge of student misconceptions and accuracy. As noted above, the teacher 
questionnaire contained questions intended to assess two different aspects of teachers’ 
knowledge of students. The first measure captured by items on the yearly spring teacher 
questionnaire was modeled after research investigating teachers’ knowledge of student 
misconceptions (KOSM) (Sadler et al., 2013). To measure KOSM, the questionnaire used 
between eight and seventeen selected items from the project-developed mathematics test, asking 
teachers, “Which [of the following options for this item] will be the most common incorrect 
answer among fourth [or fifth] graders in general?”1 The NCTE project chose items based on 

                                                      
1 This is the exact wording as it appears on the 2011-2012 spring teacher questionnaire of the study. In 2010-2011, 
the wording for this question was, “Which [of the following options for this item] do you think will be the most 
common incorrect response among your students?” The study changed to ask about fourth and fifth graders in 
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examination of pilots of the student assessment. First, the project excluded items for which there 
was not a dominant incorrect student response (i.e., items for which most students answered 
correctly, and for which incorrect responses were spread equally across distractors). After the 
project examined each item, researchers prioritized ones for which the dominant student 
response was well-established in the research literature.  
 

[Insert Figure 1] 
 

[Insert Figure 2] 
 
For instance, the first sample item (Figure 1) probes students’ understanding of the equal 

sign – as an indicator to compute (yielding the most common incorrect answer of 12) or as an 
indicator that the expressions on either side of the sign are equal to one another (yielding an 
answer of 7). Because the project-administered test did not contain enough items reflecting 
common student misconceptions2, however, we also accepted items that had a simple dominant 
wrong answer, as in Figure 2, where 43% of fourth graders who answered the question 
incorrectly chose 24 of the three offered incorrect responses.   

To generate KOSM scores for each teacher, we first compared teachers’ responses to this 
question to the actual modal incorrect response of fourth or fifth graders.3 We then estimated the 
following one-parameter logistic IRT model within grade,4 using the gsem command in Stata 
[version 13.1]: 
 

(1) 𝑃(𝑦𝑖𝑡 = 1|𝜃𝑡 ,𝛼𝑖) = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑚𝜃𝑡 − 𝛼𝑖)  
 
In equation (2), 𝑦𝑖𝑡 reflects whether teacher 𝑡 correctly guessed the modal incorrect response 
among students for item 𝑖 of the project-developed mathematics test (i.e., 𝑦𝑖𝑡 = 1).5 Our IRT 
model controls for 𝛼𝑖, which allows items to have different difficulty parameters. Due to our 
sample size of teachers and items, we use a one-parameter logistic IRT model, and thus do not 
vary the discrimination parameters among items, 𝑚. From equation (2), we recover each 
teacher’s KOSM score, 𝜃𝑡. To investigate the cross-year stability of this measure of teachers’ 
knowledge of students, we estimate equation (1) within school year and grade. 

                                                                                                                                                                           
general in light of low reliabilities observed in the first year of data collection. The study hypothesized that low 
reliabilities might have resulted from the fewer students taking any particular test item within a classroom, and 
sought a larger sample size of students from which to judge most common incorrect answer. This question and 
measure was omitted from the 2012-2013 spring teacher questionnaire. 
2 The goal of the project-administered test was not exclusively to capture common student misconceptions, but 
instead to measure students’ mastery of material contained in Common Core guidelines for each grade. We also 
perceived that well-documented student misconceptions were relatively rare at these grades at the time the project-
administered test was designed (2010).   
3 In 2010-2011, we compared teachers’ responses to this question to the actual modal incorrect response of his or her 
students, if available. 
4 Of the 306 teachers for whom we estimated KOSM scores for, nine received scores using items for both fourth and 
fifth grade. We investigated the effects of removing these teachers from our analyses and find that our results do not 
substantively change. We report results including these teachers. 
5 For three KOSM items from the 2011-12 fourth grade spring questionnaire, and for two KOSM items from the 
2011-12 fifth grade questionnaire, the most common incorrect response among students represented less than 50% 
of the responses that students chose incorrectly. When excluding these items from the construction of the KOSM 
measure, however, our results do not change. 
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The second measure was modeled on research exploring the extent to which teachers can 
predict student performance on specific material. To measure this construct of teachers’ 
accuracy, we used the above items and others from the project-developed mathematics test, this 
time asking teachers, “Approximately what percentage of your students being tested today will 
choose the correct answer [for this item]?”6 To generate accuracy scores for each teacher, we 
calculated the actual percentage of correct student answers for each item, differenced each from 
the teachers’ estimate for that item, and then used the absolute values of those differences in the 
following multilevel equation: 
 

(2) 𝑦𝑖𝑡 = 𝛽0 + 𝛼𝑖 + 𝜃𝑡 + 𝜀𝑖𝑡 
 
The outcome in equation (2) represents this absolute difference for teacher 𝑡 on item 𝑖, rounded 
to the nearest integer. The model also includes a vector of item fixed effects, 𝛼𝑖, included to 
capture differences in item difficulty (e.g., higher “difficulties” reflected items where teachers’ 
guesses were further off), and teacher random effects, 𝜃𝑡, teachers’ underlying accuracy scores.7 
Because accuracy items differed across grades of the study, we estimated equation (2) within 
grade. Consequently, teachers received accuracy scores for each grade in which they responded 
to the questionnaire.8 In addition to estimating accuracy scores within grade from items across 
all years of the study, we also estimated equation (1) within school year in addition to grade 
specifically in order to investigate the cross-year stability of scores and the relationship between 
year-specific accuracy scores to student test performance; we describe these analyses in further 
detail below. We multiplied all scores for the accuracy measure by −1 such that higher scores 
reflect more accurate predictions. 
  
 Other teacher questionnaire measures.  Items included on fall questionnaires allowed 
us to calculate several measures for use in convergent and discriminant validity analyses. We 
separated the convergent group into two categories: constructs similar to the accuracy and 
KOSM metrics, and constructs we expected, based on theory, to correlate with better 
performance in each of these areas. For similar constructs, we included the expectation that the 
two constructs would be related to one another, as accuracy and KOSM both fall under the broad 
knowledge of students domain, as described above.  
 Second, we also included teacher’s mathematical knowledge for teaching as a 
theoretically similar construct; teachers’ own content knowledge may facilitate their perception 
of student performance, and stronger knowledge of the mathematics may also help alert teachers 
to student misconceptions. Based on factor analysis results (see Charalambous et al., in 
preparation), we constructed a single metric from the Mathematical Knowledge for Teaching 
(Hill et al., 2005) and Massachusetts Test of Education Licensure (MKT/MTEL) assessments, 
with a marginal reliability of 0.92.  
                                                      
6 This is the exact wording as it appears on the 2011-2012 and 2012-13 spring teacher questionnaires of the study. In 
2010-2011, the wording for this question was, “What percentage of your students being tested today do you think 
will choose the correct answer [for this item]?” The wording between years is substantially similar.  
7 We estimated scores using the same model in equation (1) while including weights to account for differences 
between teachers in the number of students answering each item. Our results do not change substantively when 
using accuracy scores estimated with weights. We report results using only scores estimated without weights. 
8 Of the 315 teachers for whom we estimated accuracy scores for, 17 received scores using items for both fourth and 
fifth grade. We investigated the effects of removing these teachers from our analyses and find that our results do not 
substantively change. We report results including these teachers. 
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 In addition to this knowledge metric, we intuited that teaching experience would correlate 
with accuracy and KOSM because novice teachers (i.e., those with less than or equal to two 
years of experience) have had fewer opportunities to observe students’ misconceptions than more 
experienced teachers, and because such teachers face many unfamiliar challenges during their 
early years of teaching, inhibiting the ability to diagnose student proficiency.  
 We also hypothesized that teachers’ accuracy and KOSM scores would be related to 
teachers’ grading habits, as more exposure to student work would yield better insight into 
students’ thinking. Teachers’ grading habits were measured by a one-item scale asking for an 
estimate of the number of hours devoted to grading math assignments in a typical week. To 
arrive at a better estimate of teachers’ grading habits (and the other questionnaire measures 
described below), we leveraged the additional information gained from asking teachers this item 
across fall questionnaires from multiple years by estimating the following multilevel model: 
 

(3) 𝑦𝑦𝑡 = 𝛽0 + 𝛼𝑦 + 𝜃𝑡 + 𝜀𝑦𝑡 
 
The outcome of equation (3), 𝑦𝑦𝑡, represents teacher 𝑡’s response to the grading item in year 𝑦. 
The equation includes fixed effects for year, 𝛼𝑦, and random effects for teacher, 𝜃𝑡. These 
random effects capture teachers’ “underlying” grading habits, or an estimate of their habits when 
using all available data; furthermore, empirical Bayes shrinks less reliable estimates, due to 
fewer data points (Raudenbush & Bryk, 2002), closer to the mean.  
 Our analyses of teachers’ use of formative assessment followed a similar logic: these 
practices are meant to increase teachers’ knowledge of their students, and thus should 
theoretically lead to better scores on our two metrics. We measured formative assessment 
practices using responses to five items on each fall questionnaire; these questions asked teachers 
how frequently they evaluated student work using rubrics, provided feedback with numeric 
scores, differentiated assignments based on student needs, examined the problem solving 
methods of student work, and asked students to self-evaluate work (𝛼 = 0.59). After averaging 
responses across items within a year, we recovered estimates of teachers’ underlying formative 
assessment habits using the same model represented by equation (3).     
 For discriminant validity analyses, we selected five teacher questionnaire constructs that 
we expected to be unrelated to teachers’ knowledge of students: 
 

• Possession of a master’s degree, measured with a single item. Masters’ degrees typically 
do not include coursework that would lead to heightened teacher understanding of 
students;  

• The amount of time and effort teachers report preparing for class. This scale contained 
teacher responses to three items that asked about activities unrelated to students (i.e., 
gathering lesson materials, reviewing lesson content, preparation for class by working 
through explanations; 𝛼 = 0.77);   

• Teachers’ self-reported classroom climate, measured from eight items including the 
extent to which students and teachers exhibit care and concern and students comply with 
behavioral guidelines (𝛼 = 0.89). We do not expect better climates to lead to better 
knowledge of student thinking; 

• The extent to which teachers report altering the breadth and depth of instruction in 
reaction to standardized testing, captured by seven items on the fall questionnaire (e.g., 
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omitting topics not tested, teaching item formats likely to appear on the state test; 
𝛼 = 0.85);   

• Teachers’ self-reported efficacy, including the extent to which they feel prepared to meet 
the general challenges that teachers face, measured with 14 total items across years, 
drawn from work conducted by Tschannan-Moran and colleagues (1998).9 
 

Each teacher received a single score on each of these measures, estimated using the method 
outlined by equation (3). 
 
 Video-recorded lessons of mathematics instruction. Video data was scored on both the 
Mathematical Quality of Instruction (MQI) observational instrument (Hill et al., 2008) and the 
Classroom Assessment Scoring System (CLASS) observational instrument (Pianta, LaParo, & 
Hamre, 2007). We followed a similar process – identifying convergent and discriminant 
constructs – from the measures available to us from each instrument. We hypothesized that 
teachers’ accuracy and KOSM would be related to two items from the MQI: teacher remediation 
of student mistakes (remediation) and incorporation of student thinking into lessons (use of 
student productions). We similarly hypothesized that items from the CLASS instrument 
capturing the constructs of classroom climate and classroom organization would be unrelated to 
teachers’ knowledge of their students.  
 To obtain teacher-level scores for the two MQI items, each recorded lesson was scored in 
7.5-minute segments by two raters who were screened, certified, and trained by the study. 
Lessons were assigned to raters in order to minimize the number of instances that a rater watched 
the same teacher. A prior generalizability study demonstrated that observation systems similar to 
the one used by the NCTE study can yield reliable scores (see Hill, Charalambous, & Kraft, 
2012). To arrive at scores on each item for each teacher, we first averaged scores across 
segments and raters to the lesson level. We then estimated the following multilevel model, where 
lessons are nested within teachers: 
 

(4) 𝑦𝑙𝑡 = 𝛽0 + 𝜃𝑡 + 𝜀𝑙𝑡 
 
The outcome, 𝑦𝑙𝑡, represents teacher 𝑡’s score for either remediation or use of student 
productions on lesson 𝑙.10 The model also contains teacher random effects, 𝜃𝑡, which also 
reflects teacher 𝑡’s underlying MQI score. Using empirical Bayes (Raudenbush & Bryk, 2002), 
teacher scores are adjusted to account for differences in reliability caused by varying numbers of 
lesson-level MQI scores included in the model.   
 To obtain teacher-level scores for the two CLASS dimensions, each recorded lesson was 
scored in 15-minute segments by a single rater who attended biweekly calibration meetings 
conducted by the study to help ensure standardization of scoring practices. Similar to the scoring 
structure of the MQI, lessons were assigned to raters in order to minimize number of instances 
that a rater watched the same teacher. To arrive at classroom climate and classroom organization 

                                                      
9 Between 2010-2011 and 2011-2012, the items assessing teachers’ self-reported efficacy were changed on the fall 
questionnaire. The Cronbach’s alpha for 2010-2011 efficacy items was 0.63, and for 2012-2013 efficacy items was 
0.86. We standardize average efficacy scores within year before estimating equation (3) to account for the 
differences in scales. 
10 Due to differences in scoring protocols between observational instruments, 1,694 of the 1,713 video-recorded 
mathematics lessons were scored with the CLASS, while all were scored with the MQI. 
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scores for each teacher, we first averaged scores for individual codes of the CLASS across 
segments and raters to the lesson level. We then took the average across the items within each of 
the two dimensions. The classroom climate dimension comprises scores from nine individual 
assessments of classroom phenomena, such as the positive climate, teacher sensitivity, quality of 
feedback, or student engagement (𝛼 = 0.90); the classroom organization dimension comprises 
scores from codes assessing the negative climate of the classroom (reverse coded), the teachers’ 
behavioral management skills, and the productivity of the classroom (𝛼 = 0.72). Taking these 
lesson-level averages for each dimension, we then estimated the same multilevel model depicted 
in equation (4) to arrive at underlying scores for teachers. 
 
 Student questionnaires. Finally, teachers in our analysis received scores based on their 
students’ responses to a questionnaire distributed in the spring semester of each school year. 
Again, we separated constructs on the student questionnaire into those we expected would be 
convergent and discriminant with knowledge of student thinking. In the former category, we 
identified four items relevant to teachers’ accuracy score: whether students’ teachers know when 
the class does or doesn’t understand; whether their teachers actually ask whether the class 
understands; whether their teachers ask questions to be sure the class is following along during 
math instruction; and whether their teachers check to make sure that the class understands what 
is being taught (𝛼 = 0.70). Students responded to each item on a scale of 1 (Totally Untrue) to 5 
(Totally True). To estimate a monitoring, evaluation, and feedback score for each teacher from 
these four student questionnaire items, we first averaged responses across items for each student. 
We then estimated the following multilevel model, where students are nested within years (i.e., a 
teacher-year interaction effect), which are nested within teachers: 
 

(5) 𝑦𝑠𝑦𝑡 = 𝛽0 + 𝜃𝑡 + 𝜈𝑦𝑡 + 𝜀𝑠𝑦𝑡 
 

The outcome, 𝑦𝑠𝑦𝑡, represents the average of the responses to the four monitoring, 
evaluation, and feedback items of student 𝑠 in year 𝑦 taught by teacher 𝑡. The model also 
contains year random effects, 𝜈𝑦𝑡, and teacher random effects, 𝜃𝑡; the latter captures teacher 𝑡’s 
underlying score on the construct. Using empirical Bayes (Raudenbush & Bryk, 2002), teacher 
scores are adjusted to account for differences in reliability caused by varying numbers of 
students taught by each teacher.   

We conducted the same measure construction process using student responses to items on 
the questionnaire probing students about the perceived classroom behavior. The three items used 
in the measure, also scaled from 1 to 5, asked students whether time is wasted during instruction 
(reverse coded), whether students behave badly (reverse coded), and if their classmates behave 
the way the teacher wants them to (𝛼 = 0.61). 
 
Analysis Strategy 
 

This paper seeks to understand how well the accuracy and KOSM measures differentiate 
among teachers, whether teachers’ scores on these measures show evidence of convergent and 
discriminant validity with other theoretically related and unrelated metrics, and how well 
teachers’ scores on these metrics predict student outcomes. We outline a strategy for answering 
each question below.  
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 Differentiating among teachers. To ascertain the extent to which these metrics 
differentiate among teachers and contain information regarding teachers’ knowledge of students, 
we estimate a variety of reliability metrics. For the accuracy measure, we estimate the signal-to-
noise ratio in teacher scores using estimates of the intraclass correlation (ICC) statistic. For the 
KOSM measure, we use estimates of the marginal reliability produced in the IRT model 
described above. In addition to estimating the ICC and marginal reliability, we also estimate 
accuracy and KOSM scores within school years and examine cross-year correlations, a measure 
of consistency.  When conducting these analyses, we opt to utilize the largest sample of teachers 
possible (i.e., the sample of all teachers who responded to the knowledge of student items on any 
spring questionnaire): 315 and 306 teachers for accuracy and KOSM, respectively. Results are 
separated by grade, as the student items used to create these two metrics were specific to the tests 
at each grade level.  
 
 Convergent and discriminant validity of scores. To investigate the convergent and 
discriminant validity of scores, we correlated teacher accuracy and KOSM scores with scores 
from measures constructed using data from teacher questionnaires, video-recorded lessons, and 
student questionnaires, as outlined above. In these correlational analyses, we combine the sample 
of fourth and fifth grade teachers, as we have no expectation of different patterns in convergent 
and discriminant validity scores across grades. For example, we would hypothesize that teachers 
who spend more time grading student work would have stronger accuracy and KOSM scores, 
regardless of the grade level of their students. In addition to this theoretical motivation, 
combining samples allows for more power in our correlational analyses. 

For our analyses investigating the convergent and discriminant validity of scores, and for 
those investigating the relationship between knowledge of student measures to student outcomes 
(described below), we restrict our sample to 272 teachers. These teachers have estimates for all 
of our hypothesized convergent and discriminant metrics, and teach in classrooms that are 
included in our models predicting student outcomes. 

 
 Predicting student outcomes.  Most research and policy-makers operated under the 
assumption that teachers’ knowledge of students is predictive of student test gains. We cannot 
test this hypothesis in a causal manner, as we do not randomly assign students to teacher 
knowledge levels. However, we examine associations between these forms of teacher knowledge 
and student outcomes under conditions that attempt to limit the bias in estimates in order to 
provide suggestive evidence of such a relationship. To do so, we estimate models where 
teachers’ knowledge of student scores predict student performance on either the state 
standardized mathematics test or the project-developed mathematics test. We estimate our 
models using the following multilevel equation, where students are nested within years, which 
are nested within teachers: 
 

(6) 𝑦𝑠𝑝𝑐𝑔𝑦𝑡 = 𝛽0 + 𝛼𝑋𝑠𝑦−1 + 𝛿𝐷𝑠𝑦 + 𝜙𝑃𝑝𝑐𝑔𝑦𝑡 + 𝜅𝐶𝑐𝑔𝑦𝑡 + 𝜂 + 𝜔𝜃𝑔𝑡 + 𝜓𝜋𝑡 + 𝜇𝑡 + 𝜈𝑦𝑡 +
𝜀𝑠𝑝𝑐𝑔𝑦𝑡 

 
The outcome, 𝑦𝑠𝑝𝑐𝑔𝑦𝑡, represents the test performance on either the state standardized or project-
developed mathematics test of student s, in classroom p, in cohort (i.e., school, year, and grade) 
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c, taking the test for grade g,11 in year y, taught by teacher t. Equation (6) contains the following 
controls:  
 

• 𝑋𝑠𝑦−1, a vector of controls for student prior test performance;  
• 𝐷𝑠𝑦, a vector of controls for student demographic information; 
• 𝑃𝑝𝑐𝑔𝑦𝑡, classroom-level averages of 𝑋𝑠𝑦−1 and 𝐷𝑠𝑦 to capture the effects of a 

student’s peers;  
• 𝐶𝑐𝑔𝑦𝑡, cohort-level averages of 𝑋𝑠𝑦−1 and 𝐷𝑠𝑦 to capture the effect of a student’s 

cohort;  
• 𝜂, school, district, and grade-by-year fixed effects;  
• 𝜃𝑔𝑡, accuracy and KOSM scores for teacher t for grade g;12  
• 𝜋𝑡, a vector of other teacher-level variables including teachers’ MKT/MTEL scores 

and an indicator for having taught two or fewer years in year 𝑦;  
• 𝜇𝑡, a random effect on test performance for being taught by teacher 𝑡; and, 
• 𝜈𝑦𝑡, a random effect on test performance for being taught by teacher 𝑡 in year 𝑦. 

 
In addition to restricting the student sample to those taught by the 272 teachers considered in our 
convergent and discriminant validity analyses of accuracy and KOSM, a variety of restrictions 
were placed on the student sample included in this multilevel model, resulting in a sample of 
9347 students taught by these teachers. These further restrictions attempted to exclude atypical 
students (i.e., those who skipped or repeated a grade for either tested outcome) and classrooms 
(i.e., classrooms with high proportion of special education students, classrooms with high 
proportion of students with missing baseline scores, and classrooms with fewer than five 
students).  

The multilevel model depicted in equation (6) controls for the student-level predictors 
used frequently by states, districts, and research studies to obtain value-added scores for teachers. 
Some predictors incorporated in the model, however, are unique. First, we control for classroom- 
and cohort-level averages of prior test performance and demographics as well as school fixed 
effects in our model. If teachers’ accuracy and KOSM scores influence the relationship between 
these predictors and student test performance, including these controls will attenuate the 
observed relationship between knowledge of students and outcomes. We opt, however, to choose 
this restrictive model in order to help address the observational nature of analyses, and address 
the possibility that students are sorted into teachers’ classrooms (see, for example, Rothstein, 
2009). 

Second, in an effort to disentangle the effect of teachers’ knowledge of students from 
related predictors, our multilevel model contains several teacher-level controls. One control is 
teachers’ mathematical knowledge; as noted above, mathematical knowledge may be related to 
knowledge of students. We also include a dummy variable that indicating if the teacher has fewer 
than two or fewer years of experience; several studies (e.g., Kane, Rockoff, & Staiger, 2008) 

                                                      
11 Fewer than 1% of students took the state standardized mathematics test at a different grade level than the project-
developed mathematics test. We consider this percentage to be negligible for the purposes of our analyses. 
12 We investigate the effect of using teacher accuracy and KOSM scores standardized within grade and district from 
teacher scores in the model depicted by equation (6). We rescale scores because student state test performance is 
standardized within district, grade, and school year; this modification does not result in significant differences in our 
findings.  
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have shown that novice teachers post slightly weaker value-added scores, and as noted above, 
experience may play a role in enhancing both accuracy and KOSM.  

In addition to our main investigation into the relationship between teacher accuracy and 
KOSM scores to student performance on state standardized mathematics tests and the project-
developed mathematics test, we also investigate: the relationship between within-year (as 
opposed to “career”) accuracy and KOSM scores to student performance, and the relationship 
between teachers’ career knowledge of students scores to student test performance for students at 
varying levels of prior test performance. We conduct the first of these two additional sets of 
analyses because these knowledge measures may be composed both of an underlying trait (i.e., 
knowledge of students) and a year-specific deviation (i.e., knowledge of particular students). Our 
second analysis explores results found by Sadler and colleagues (2013), who noted 
heterogeneous effects of teachers’ knowledge on outcomes for different groups of students, 
stratified based on pretest scores. 

 
Results 

 
First, we provide figures depicting teachers’ performance on spring questionnaire items 

assessing their accuracy and KOSM.  
 

[Insert Figure 3] 
 

[Insert Figure 4] 
 

[Insert Figure 5] 
 

[Insert Figure 6] 
 

The figures above show that the items used to estimate teachers’ accuracy and KOSM scores 
vary substantially in terms of their difficulty. For the accuracy items, the median, among 
teachers, for the absolute differences between predicted proportion of correct student responses 
to actual correct range from approximately 10% up to 50%, depending on the grade-level and 
administration of the spring questionnaire. Similarly, across the KOSM items, we see substantial 
amounts of variation in terms of the proportion of teachers correctly guessing the modal incorrect 
response for students on different items of the project-administered mathematics test.  
 
Differentiating among Teachers with Accuracy and KOSM Scores 
 
 To investigate how well the accuracy measure differentiated among teachers in our 
sample, we estimated adjusted ICCs. Specifically, we calculated the proportion of the variance in 
𝑦𝑖𝑡 of equation (1) attributable to differences between teachers, after controlling for item fixed 
effects. The unadjusted ICC reflects the signal-to-noise ratio of teacher performance on a single 
item measuring accuracy; because each teachers’ score comprises their performance on multiple 
accuracy items from the spring questionnaire(s), we adjust the ICC for the total number of 
accuracy items that the average teacher responded to (𝑛 = 20). We find the adjusted ICC of 
accuracy scores for fourth grade teachers to be 0.74, and for fifth-grade teachers to be 0.71. We 
also investigated the adjusted ICCs for the set of 22 fourth-grade teachers and 25 fifth-grade 
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teachers who responded to all items (𝑛 = 37) measuring accuracy. The adjusted ICCs for these 
samples were 0.79 and 0.78, respectively. These values for the adjusted ICC suggest that, with 
enough item responses, our measure of accuracy can somewhat reliably differentiate among 
teachers’ performance on this construct. 
 To investigate how well the KOSM measure differentiated among teachers in our sample, 
we calculated marginal reliability statistics following the estimation of our IRT model reflected 
in equation (2). The marginal reliability statistic compares the variance of teacher scores to the 
expected value of error variance of scores, and is comparable to ICCs of classical test theory (see 
Sireci, Thissen, & Wainer, 1991). The estimated marginal reliability of KOSM scores for fourth 
grade teachers was 0.21; for fifth grade teachers it was 0.40. The magnitude of the average 
standard errors of scores reflects these reliability coefficients, suggesting very imprecisely 
estimated scores for a given individual; for fourth grade, the average magnitude was 0.93, and 
for fifth grade, the average magnitude was 0.85. The low estimates of reliability and the 
noisiness of score estimates suggest that the KOSM measure does not adequately differentiate 
teachers.  
 The difference in reliability between the two metrics can also be seen when comparing 
the cross-year correlation of within-year scores. Depending on the grade and combination of 
years, the cross-year correlation of accuracy score is moderate, ranging from 0.32 to 0.51; these 
estimates suggests that teachers’ abilities to predict the proficiency of their students is somewhat 
consistent from school year to school year, despite changes in the population of students being 
instructed. Furthermore, the range of correlations compares favorably to the cross-year 
correlations of other measures of teacher quality used by policymakers and researchers 
(Goldhaber & Hansen, 2013; McCaffrey, Sass, Lockwood, & Mihaly, 2008; Polikoff, 2015). 
KOSM scores, on the other hand, demonstrate less consistency from one year to the next. For 
fourth grade teachers, scores correlated at 0.22 between 2010-2011 and 2011-12. For fifth grade 
teachers, this correlation was slightly higher at 0.26.  
 The differences between accuracy and KOSM measures of teachers’ knowledge of 
students might emerge for several reasons. Because the accuracy questions were asked on three 
different administrations of the spring survey, and the KOSM questions on just two, the overall 
reliability, operationalized through the adjusted ICC or marginal reliability metrics, should be 
higher for the former construct. The cross-year correlations for the KOSM measure may be lower 
because of changes to the language of questions assessing the construct between the 2010-2011 
version and the 2011-2012 version of the spring questionnaire. 
 
Convergent and Discriminant Validity of Accuracy and KOSM Scores 
 
 Next, we investigate the direction and magnitude of correlations between teacher 
accuracy and KOSM scores to other measures that we hypothesize should and should not be 
related to teachers’ knowledge of students. First, we consider the results of our convergent 
validity analyses, seen in Table 1. 
 

[Insert Table 1] 
 

To start, we observe an extremely low and insignificant relationship between our two 
constructs of interest, accuracy and KOSM. This may owe to the poor reliability of the KOSM 
measure, but it is still surprising, given that both are theorized to be nested within the same 
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general domain of pedagogical content knowledge.  We do observe, as predicted, a positive and 
significant relationship between both constructs and teachers’ mathematical knowledge as 
measured by the MKT/MTEL variable, supporting the interpretation that knowledge of teaching-
related mathematical content and students are related, as hypothesized in the pedagogical content 
knowledge literature.  

Table 1 shows few significant relationships between the experiences thought to enhance 
accuracy and KOSM and teachers’ scores on these metrics. Being a novice teacher is associated 
with lower scores on both measures, but not significantly so. The amount of reported time 
grading student work had a mixed relationship to the two metrics, and the relationship for 
formative assessment was nearly significant, but in the opposite direction as expected, with 
teachers who report more formative assessment practices performing less well on these two 
measures.  

Correlations between accuracy and KOSM with raters’ and students’ indicators of closely 
related teaching activities appeared somewhat more promising. Teachers who were observed as 
offering more classroom remediation did post modestly higher scores on both metrics, though the 
interpretation of these correlations differs by construct. For the first, teachers who can better 
predict their own students’ likely performance also offer slightly more remediation, regardless of 
whether that students’ performance is strong or weak. This suggests that performance on both 
metrics may be governed by teachers’ general awareness of students. For the second construct, 
teachers with stronger KOSM also engaged in more in-class remediation during observed 
lessons. The directionality is not clear in this case – whether KOSM develops from teacher 
engagement in remediation, or whether stronger KOSM spurs more remediation activity. 
Accuracy also appears strongly related to teachers’ use of student productions, suggesting that 
teachers who incorporate more student ideas into their lessons can also better predict their 
students’ performance. A similar relationship did not appear for student productions and KOSM. 
Finally, teacher performance on accuracy and KOSM was largely not related to students’ reports 
of teacher monitoring, evaluation, and feedback, although this may be reflective of the low 
reliability of the latter metric (𝛼 = 0.59).  
 

 [Insert Table 2] 
 

We now turn to discriminant validity. From Table 2, we see that relationships between 
these constructs and teachers’ accuracy and KOSM were, as hypothesized, non-existent. There 
are two exceptions. First, possession of a master’s degree is positively and marginally 
significantly related to the two constructs of interest. However, this may stem from the fact that 
experience, theoretically a contributor to accuracy, is associated with further education in our 
data. We test this possibility by running partial correlations between master’s degree and 
accuracy, controlling for whether the teacher is a novice, and find that the relationship between 
the first two measures is indeed weakened when accounting for the experience of teachers. The 
other exception to our non-correlations is in the area of effort, where teachers who performed 
worse on our KOSM and accuracy measures also reported more time spent on preparing for 
class. We can think of no reason for this correlation, and note that our expectation for violation 
of divergent validity would have been a positive effect—that is, higher-scoring individuals tend 
to perform better on diverse sets of metrics.  

Overall, results from these analyses are quite mixed. Although correlations with 
constructs hypothesized to be divergent are quite low, correlations between some constructs 
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hypothesized to be convergent were also quite low. One reason may be the generally poor 
reliability for some of these metrics, and perhaps poor validity for some of the self-report data. 
Nevertheless, we take the modest correlations observed in Table 1, on convergent validity, as 
evidence that at least some of the structures and relationships we hypothesized are supported. We 
turn now to predicting student outcomes.  
 
Predicting Student Outcomes 
  
 As noted above, both theory and prior empirical evidence suggests that accuracy and 
KOSM scores should be related to student test performance. The results of our explorations can 
be seen in Table 3 below. 
 

[Insert Table 3] 
 

From Table 3, we see that teachers’ accuracy scores strongly associate with their students’ 
performance on the project-developed mathematics test, even when controlling for factors that 
might bias this relationship, such as classroom- and cohort-level aggregates of student prior test 
performance and demographic characteristics, or school fixed effects. The magnitude of the 
effect of teachers’ accuracy scores is fairly large. As seen in Table 3, the standard deviation (SD) 
of teacher random effects is approximately 0.11 (i.e., students taught by a teacher one-SD above 
average in terms of effects on student performance on the project-developed test, on average, 
score 0.11 SDs higher). The point estimate on teacher accuracy thus suggests that being taught 
by a teacher one-SD above average, in terms of accuracy, approximates the effect of being 
taught by a teacher who is 0.5 SDs above average, in terms of effects on student outcomes. 
Alternatively, we can compare the magnitude of the coefficient to the effect of being a 
disadvantaged student, socioeconomically, on performance on the project-developed test; 
specifically being eligible for a free- or reduced-price lunch is associated with a 0.034 SD 
decrease in test performance (not shown). Conversely, teachers’ scores on the KOSM measure 
showed no relationship to their students’ performance.  

We also investigate the association of the two knowledge of students measures to state 
standardized test performance. Doing so helps alleviate a concern with the above analysis: that 
the same items were used to measure both teachers and students’ performance, albeit in different 
constructs. This raises a question of whether teachers’ accuracy and KOSM scores predict 
student test performance more generally, or whether we have identified a test-specific 
phenomena. Yet, as Table 3 shows, though we see slightly weaker relationships overall between 
accuracy scores and student test performance on the state standardized mathematics tests, the 
direction of the effect is consistent with our findings regarding student performance on the 
project-developed mathematics test; we observe a suggestive positive relationship (i.e., 𝑝 <
0.11). The consistent positive relationship between teachers’ accuracy scores and their students’ 
test performance on different tests corroborates hypotheses posited by prior literature.  

Similar to the project-administered test, we observe no association of teachers’ KOSM 
scores to their students’ state test performance. Earlier investigation into how well the KOSM 
measure differentiated among teachers suggested that scores on this second measure of teachers’ 
knowledge of students were fairly unreliable. Despite this fact, standard errors for the point 
estimates of the effect of KOSM on student test performance were comparable to those for the 
point estimates of the effect of accuracy on student test performance.   
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[Insert Table 4] 

 
Table 4 above further supports our conclusions regarding student outcomes. In this table, 

we use within-year knowledge of student scores in order to explore the possibility that 
knowledge of student constructs may measure a year-specific component of teacher capability as 
well as a general trait. Again, we find that teacher accuracy scores positively predict student test 
performance on both the project-developed test and the state standardized test, with stronger 
associations demonstrated with performance on the project-developed test. 

 
[Insert Table 5] 

 
Finally, Table 5 above shows the results from our exploration into a finding reported by 

Sadler and colleagues (2013). Similar to Sadler et al., we find that the effect of teachers’ 
knowledge of students (in our case, our significant predictor, accuracy) on student outcomes 
differs across student populations. Specifically, we find suggestive evidence for a weaker 
relationship between accuracy and test performance for students who are lower performing at 
baseline. We are at a loss to explain this.  
 

Conclusions 
 

This paper provides an example of how one might investigate novel metrics for capturing 
teachers’ knowledge of students. Although other efforts in this area have faltered due to 
measurement challenges (Hill et al., 2008), and still others have returned mixed results with 
regards to the relationship of such knowledge to student test performance (Carpenter et al., 1988; 
Helmke & Schrader, 1987), we believe the results here are promising. While these results are not 
causal, we controlled for student sorting by using a fairly rigorous model (i.e., one incorporating 
peer- and cohort-level averages of student demographics and baseline test performance in 
addition to school fixed effects) on the student outcome side; we also find it less-than-plausible 
that student achievement could cause teacher familiarity with student work, though in non-
experimental research, anything is possible. 
 Our investigation produced fairly good evidence that teachers’ accuracy in predicting 
students’ outcomes is an identifiable teacher-level trait. This metric returned adequate 
reliabilities for both fourth and fifth grade teachers and teachers’ scores were correlated across 
years, suggesting that teachers are fairly consistent in their ability. This metric was also related to 
teachers’ mathematical knowledge and their engagement with specific classroom activities we 
hypothesized would be related to accuracy, in particular remediation of student misconceptions 
and use of student productions. This metric also predicted student outcomes on the project-
administered test from which it was derived, and was marginally significant in models predicting 
student performance on state standardized tests. These mild relationships and significant 
predictive power may be interpreted in several ways. If our evidence of construct validity is 
correct and further developed in future analyses, we might consider accuracy to be a separate and 
important facet of teachers’ knowledge of students. However, we also recognize that our 
evidence is indeterminate on this point; accuracy may be simply an indicator of more generally 
high-quality instructional practice. Either way, these results suggest that a construct roughly 
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titled “knowing where your students are, in terms of mastery of content” should take a place in 
contemporary theoretical delineations of teacher knowledge 
 The story is more complicated for KOSM, where our fourth and fifth grade metrics 
performed considerably more poorly. Reliabilities were sub-par, although there was some 
evidence of cross-year correlation in teacher scores and weak evidence for convergent validity. 
However, this metric did not predict student outcomes. We find this somewhat surprising, given 
the central place of KOSM in most theories of teacher knowledge (Ball et al., 2008; Shulman, 
1986), although we also note that the two empirical studies of this area returned mixed results 
(Carpenter et al., 1988; Sadler et al., 2013). This suggests that analysts may turn attention to 
alternative measurement strategies within this domain. The development of knowledge on 
student learning trajectories, for instance, poses one avenue for inquiry.  
 Finally, we don’t have a good measure of what teachers actually do with such knowledge. 
Although we opened this article with evidence from observational and case studies of teaching, 
we argue that more can and should be learned about how knowledge in this arena supports 
student learning. Strong teacher accuracy may result in better matching of mathematics lessons 
to students’ skill level; more appropriate amounts of time spent remediating students’ 
mathematical misunderstandings, or other by-products. These seem like issues that could benefit 
from further exploration in both observational and experimental settings.  
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Figures and Tables 
 
Consider the following problem from the student assessment: 
 

 
 
 
The correct answer to this problem is C. 
 

a. Approximately what percentage of your students being tested today 
will choose the correct answer?   

% 

b. Approximately what percentage of fourth grade students in your 
district will choose the correct answer? % 

c. Which will be the most common incorrect answer 
among fourth graders in general? (Please circle 
ONE answer.) 

 

A          B         D 

 
Figure 1. Example item on spring questionnaire used to assess both accuracy and KOSM. For the 
KOSM measure, this item has a researched-aligned dominant incorrect student response. 
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Consider the following problem from the student assessment: 
 

 
 
 
The correct answer to this problem is 36. 
 

a. Approximately what percentage of your students being tested today 
will answer correctly?   

% 

b. Approximately what percentage of fourth grade students in your 
district will answer correctly? % 

Which will be the most common incorrect answer among 
fourth graders in general? (Please circle ONE answer.) 
 

6          24         96 

 
Figure 2. Example item on spring questionnaire used to assess both accuracy and KOSM. For the 
KOSM measure, this item has a simple dominant incorrect student response. 
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Figure 3. Teacher performance on accuracy items in fourth grade. 
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Figure 4. Teacher performance on accuracy items in fifth grade. 
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Figure 5. Teacher performance on KOSM items in fourth grade. 
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Figure 6. Teacher performance on KOSM items in fifth grade.
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Table 1. Convergent Validity of Knowledge of Student Scores 
     

Measure Accuracy KOSM MKT/MTEL 

Novice 
(<=2 

Years) 
Grading 
Habits 

Formative 
Assessment Remediation 

Use of 
Student 

Productions 

Monitoring, 
Evaluation, 

and 
Feedback 

          Grades 4 & 5 
            Accuracy 1 0.08 0.25*** -0.04 0.05 -0.11~ 0.14* 0.22*** 0.01 

   KOSM 0.08 1 0.13* -0.08 -0.08 -0.08 0.12* -0.03 -0.11~ 
  

         Note: Number of teachers is 272. ~p<0.10, *p<0.05, **p<0.01, ***p<0.001 
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Table 2. Discriminant Validity of Knowledge of Student Scores 
    

Measure 
Master's 
Degree Effort 

Self-Reported 
Classroom 

Climate Test Prep Efficacy 
Classroom 

Climate 
Classroom 

Organization 

Perceived 
Classroom 
Behavior 

         Grades 4 & 5 
           Accuracy 0.10~ -0.17** -0.02 0.10 -0.04 -0.02 -0.02 0.09 

   KOSM 0.10 -0.16** -0.08 0.02 -0.06 -0.05 -0.02 -0.09 
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Table 3. Predicting Student Test Performance with Career Knowledge of Student Scores 
  Student Mathematics Test Performance 
  Project-Developed Test 

 
State Standardized Test 

        Teacher Knowledge of Student Predictors 
          Accuracy 0.049*** 

 
0.049*** 

 
0.024 

 
0.024 

 
(0.013) 

 
(0.013) 

 
(0.015) 

 
(0.015) 

   Knowledge of Misconceptions 
 

-0.014 -0.015 
  

0.011 0.011 

  
(0.012) (0.012) 

  
(0.014) (0.014) 

        Other Teacher Predictors 
          Novice Teacher (<= 2 Years) -0.045 -0.042 -0.046 

 
-0.131* -0.129* -0.130* 

 
(0.051) (0.052) (0.051) 

 
(0.054) (0.054) (0.054) 

   Career MKT/MTEL 0.018 0.028* 0.020 
 

0.024 0.027~ 0.022 

 
(0.013) (0.013) (0.013) 

 
(0.015) (0.015) (0.015) 

        Value-added Model Predictors 
          Student Prior Test Performance Vector x x x 

 
x x x 

   Grade-Year Interaction Fixed Effects x x x 
 

x x x 
   Student Demographic Vector x x x 

 
x x x 

   Classroom-level Aggregates x x x 
 

x x x 
   Cohort-level Aggregates x x x 

 
x x x 

   School Fixed Effects x x x 
 

x x x 
   District Fixed Effects x x x 

 
x x x 

        Teacher Random Effects x x x 
 

x x x 
Teacher-Year Interaction Random Effects x x x 

 
x x x 

        SD of Teacher Random Effects 0.110 0.116 0.109 
 

0.148 0.150 0.148 

 
(0.016) (0.017) (0.016) 

 
(0.015) (0.015) (0.015) 

        Number of Students 9347 9347 9347 
 

9347 9347 9347 
Number of Teachers 272 272 272 

 
272 272 272 
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Table 4. Predicting Student Test Performance with Within-Year Knowledge of Student Scores 
  Student Mathematics Test Performance 
  Project-Developed Test 

 
State Standardized Test 

        Teacher Knowledge of Student Predictors 
          Accuracy 0.054*** 

 
0.054*** 

 
0.024* 

 
0.023~ 

 
(0.011) 

 
(0.013) 

 
(0.012) 

 
(0.014) 

   Knowledge of Misconceptions 
 

-0.009 -0.011 
  

0.019 0.018 

  
(0.013) (0.013) 

  
(0.015) (0.014) 

        Other Teacher Predictors 
       

   Novice Teacher (<= 2 Years) -0.042 -0.056 -0.058 
 

-
0.128* -0.120* -0.119* 

 
(0.051) (0.055) (0.053) 

 
(0.053) (0.059) (0.058) 

   Career MKT/MTEL 0.019 0.037* 0.028* 
 

0.024~ 0.030~ 0.028~ 

 
(0.013) (0.015) (0.014) 

 
(0.015) (0.016) (0.016) 

        Value-added Model Predictors 
          Student Prior Test Performance Vector x x x 

 
x x x 

   Grade-Year Interaction Fixed Effects x x x 
 

x x x 
   Student Demographic Vector x x x 

 
x x x 

   Classroom-level Aggregates x x x 
 

x x x 
   Cohort-level Aggregates x x x 

 
x x x 

   School Fixed Effects x x x 
 

x x x 
   District Fixed Effects x x x 

 
x x x 

        Teacher Random Effects x x x 
 

x x x 
Teacher-Year Interaction Random Effects x x x 

 
x x x 

        SD of Teacher Random Effects 0.113 0.112 0.101 
 

0.142 0.148 0.140 

 
(0.017) (0.021) (0.023) 

 
(0.015) (0.018) (0.019) 

        Number of Students 9256 7633 7587 
 

9256 7633 7587 
Number of Teachers 272 272 272 

 
272 272 272 
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Table 5. Predicting Student Test Performance with Career Accuracy Scores, Interactions 
  Student Mathematics Test Performance 

  
Project-Developed 

Test 
 

State Standardized 
Test 

      Teacher Knowledge of Student Predictors 
        Accuracy 0.049*** 0.074*** 

 
0.024 0.038* 

 
(0.013) (0.017) 

 
(0.015) (0.017) 

      Interactions 
        Accuracy * Prior Test Performance 0.001 

  
0.013~ 

 
 

(0.008) 
  

(0.007) 
    Accuracy * 1st Tercile Prior Test Performance 

 
-0.044** 

  
-0.033* 

  
(0.017) 

  
(0.014) 

   Accuracy *  2nd Tercile Prior Test Performance 
 

omitted 
  

omitted 

  
(.) 

  
(.) 

   Accuracy * 3rd Tercile Prior Test Performance 
 

-0.027 
  

-0.003 

  
(0.018) 

  
(0.015) 

      Other Teacher Predictors 
        Novice Teacher (<= 2 Years) -0.045 

  
-0.130* 

 
 

(0.051) 
  

(0.054) 
    Career MKT/MTEL 0.018 

  
0.024 

 
 

(0.013) 
  

(0.015) 
 

      Value-added Model Predictors 
        Student Prior Test Performance Vector x x 

 
x x 

   Grade-Year Interaction Fixed Effects x x 
 

x x 
   Student Demographic Vector x x 

 
x x 

   Classroom-level Aggregates x x 
 

x x 
   Cohort-level Aggregates x x 

 
x x 

   School Fixed Effects x x 
 

x x 
   District Fixed Effects x x 

 
x x 

      Teacher Random Effects x x 
 

x x 
Teacher-Year Interaction Random Effects x x 

 
x x 

      SD of Teacher Random Effects 0.110 0.111 
 

0.148 0.147 

 
(0.016) (0.016) 

 
(0.015) (0.015) 

      Number of Students 9347 9347 
 

9347 9347 
Number of Teachers 272 272 

 
272 272 

            
 


